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THERMAL RESISTANCE OF SHELLS OF VARIOUS CONFIGURATIONS
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A method is proposed for calculating the thermal resistances of shells
of various configurations with allowance for the temperature depen-
dence of the thermal conductivity of the material. Approximate for-
mulas are presented for the thermal resistances of shells in the form
of infinite prisms and parallelepipeds.

The one-dimensional heat flux through a closed
shell

p— —x(t)%S(x).

We reduce this expression to the form
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It is assumed that the heat flux remains unchanged in
passing through the shell, i.e., there are no additional
energy sources or sinks along its path. We apply the
mean value theorem to the left side of (1):
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Fig. 1. Heat flow lines and isothermal surfaces
of prismatic shell: a) actual pattern; b) schema-
tized pattern; c) complete shell; d) part of shell.

Hence
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We define the thermal resistance of the shell as
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and find the corresponding expressions for an infinite
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Fig. 2. Shell in the form of a parallelepiped.

plane wall, and infinite cylinder and a sphere. The
areas of the isothermal surfaces are respectively

Sp=LiL, Sp=2nxL, Sg=4nx

where L, and L, are the length and width of the plane
wall, and L, the length of the cylindrical wall.

Substituting the expression for S in (8) and integ-
rating, we obtain the known formulas
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We will find the thermal resistance of a shell in
the form of an infinite prism of rectangular cross sec~
tion. Figure 1 shows the cross section of an infinite
prism containing a second infinite prism. We assume
thatthe surfaces ofthe prisms are isothermal surfaces
with temperatures t; and t;, and that the mean thermal
conductivity of the wall material is equal to A. Calcu-
lating the thermal resistance of such ashell is a rather
complicated problem, since the heat flux is not one-
dimensional. Exact analytic methods would lead to
clumsy expressions; accordingly, it is desirable to
consider an approximate solution. Whereas the ex-
treme isothermal surfaces are prismatic, the inter-
mediate ones have a more complicated configuration:
their corners are rounded, as shown in Fig. la. We
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connect the edges of the inner and outer prisms with
plane surfaces (Fig. 1b) and consider the nature of the
heat flow lines in their neighborhood. In the first ap-
proximation it may be assumed that the heat flow lines
do not intersect these surfaces, i.e., they may be as-
sumed adiabatic. The prismatic shell was found to be
divided into four parts, each of which can be considered
separately. We also assume that, without much loss of
accuracy, the intermediate isothermal surfaces can be
regarded as plane and parallel tothe edges of the prism,
as shown in Fig. 1b. A comparison of Figs. 1la and 1b
leads to the conclusion that there is little difference
between the actual process and the model. Thus, the
problem reduces to determiningthe thermal resistances
of the individual parts of the prismatic shell, one of
which is represented in Fig. 1d. The total thermal re-
sistance of the prismatic shell consists of the four
parallel-connected thermal resistances of the parts of
the shell. In the bodies obtained by the method indi~
cated the heat flux is one-dimensional, and there areno
heat sources or sinks; therefore to determine the ther-
mal resistance it is possible to apply Eq. (3). We de-
note the sides of the outer and inner rectangles by Iy,
Ly, and Ix, ly, and the thicknesses of the walls of the
prismatic shell by &%, 6y%» 81y, Oay; we introduce the
variable coordinates xy, X;, ¥, ¥3 in each part of the
prismatic wall (Fig. 1lc). We will consider the left-
hand part of the shell and denote the height of the plane
isothermal surface at distance x; from the inner wall
by lyi(X1)§ here the subscript y indicates that the sur-
face is parallel to the y-axis. If the length of the prism
is L, then the area of the isothermal surface is equal
to Liy. Similar notation has been introduced for the in-
termediate isothermal surfaces of the other parts of
the shell (Fig. lc).

It follows from Fig. 1c and Fig. 1d that
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Substituting these expressions for the isothermal
gsurfaces in (3) and integrating, we obtain expressions
for the thermal resistances. For example, for the
surface Lly1(x) we obtain
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It is possible to write a generalized expression for the
isothermal surface
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In (6) and (7) the parameters €, 17, and i have the
following values:

NM=2=x,4 &€=y X €zm i=1 or 2 (8)

Using (7) and (8), we write expressions for the
thermal resistances of each of the four parts of the
shell and add their reciprocal values (parallel con-
nection), As a result we obtain an expression for the
thermal resistance of the entire prismatic shell. The
reciprocal of R, i.e., the thermal conductance o of
the prismatic shell, has the form

o =AL(L,—1,)(L,—1,)!x
x( e — L). (9)
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If the thicknesses of all the parts of the prismatic
shell are the same and equal to §, from (9) we obtain

1
+ J:
IH_LL ]ni

x ly

! (10)

o=4XL(

If, moreover, both prisms are square in cross sec-
tion, we find that
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We will employ the method proposed for prismatic
shells to determine the thermal resistance of a shell
in the form of a parallelepiped. For this purpose we
connect with plane surfaces the opposite edges of the
inner and outer parallelepipeds (Fig. 2). Because of
the nature of the heat streamlines, in first approxima-
tion the surfaces introduced can be assumed adiabatic;
then the parallelepiped is divided into six truncated
pyramids, whose thermal resistances can be consi-
dered separately.

We will find an analytic expression for the area of
the intermediate rectangular isothermal surface. For
this purpose we write the expressions for the sides of
the rectangle in generalized form (8),
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The intermediate isothermal surface has the form of a
rectangle. Therefore
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S(Ve) = Ley (v b, () (12)

Substituting the value of the area S(v) in (3) and inte-
grating, we obtain a general expression for the thermal
resistance RVi of one part of the shell:
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The reciprocal of the thermal resistance oy, = (R.),i)‘1
is the thermal conductance of one of the six parts of
the shell. Adding the thermal conductances of all the
parts of the shell, for the thermal conductance ¢ of a
shell in the form of a parallelepiped we obtain
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The geometric parameters in (14) are indicated in
Fig. 2.

If the thicknesses of all six walls of the shell are
the same, then

L,—l,=L,—l,=L,—1,=25

and (14) takes the simpler form
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If it is assumed that both parallelepipeds have the
form of a cube and that the wall thicknesses of the
cubic shell are the same, Eq. (15) takes the form

o= 5 (16)
8

We will compare (16) with the thermal conductance

of a spherical shell whose value is easily obtained from

(4):
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where

L=l (=0, (l—1I)=28.

The values of ¢ calculated from (16) and (17) differ
by less than 5%.

Equations (9) and (14) for the thermal resistances of
shells in the form of a prism and a parallelepiped can
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also be used if the thermal conductivities of the differ-
ent walls are not the same. In this case each compo-
nent of the thermal conductances of the parts of the
snell must be written with its own value of the thermal
conductivity coefficient.

The proposed method can also be applied to shells of

. other configurations.

In conclusion we note that if the wall thicknesses
are the same the thermal resistance of shells in the
form of a parallelepiped can be calculated from the
formulas proposed in 1913 by Langmuir, Adams, and
Michael [2]. These formulas were established for var-
ious special cases on the basis of an approximation of
the numerical data obtained from experiments on elec-
trical models, i.e., the formulas may be regarded as
empirical. It should be noted that the authors did not
give the accuracy of these formulas; therefore they
should be used cautiously. Nonetheless, it is of interest
to compare values of the thermal conductance calcu-
lated from (15), (16) and from Langmuir's formulas.
For a shell in the form of a cube with [/6 = 0.2, we
obtained the following results: when 0.2 < [/6 < 1.0
the data of the calculations differ by from 0 to 30%, and
when 1.0 < /6 = 3 by from 30% to 0. For shells in the
form of a parallelepiped similar results were obtained,
the values of the conductance calculated from the em-
pirical formulas being toc low as compared with those
calculated from (15) and (16). The thermal conductances
calculated for a plane angle from (9) and found graph-
ically differ by not more than 6%.

It would be desirable to make a computer investiga-
tion of the thermal resistance of shells in the form of
a parallelepiped and compare the results with both the
approximate analytic relations and Langmuir's formu-
las.

NOTATION

P is the heat flux; A is the thermal conductivity of
the material at temperature t; A is the mean thermal
conductivity; S(x) is the area of the isothermal surface
at a distance x from the origin; R and o are the ther-
mal resistance and thermal conductance of shell; 73
and L; denote the length of side i of inside and outside
parallelepipeds or prisms.
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